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1. INTRODUCTION AND STATEMENT OF THE RESULTS

The asymptotic behaviour of time dependent quantities in the study of
Schrodinger equations with quasi-periodic and random potentials, or in the
study of periodically kicked or pulsed Hamiltonian systems has attracted
much attention in the last decade. For a review we refer to [Ho] where
many references beyond the ones cited below can be found. We present in
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We study transport properties of Schrodinger operators depending on one or
more parameters. Examples include the kicked rotor and operators with quasi-
periodic potentials. We show that the mean growth exponent of the kinetic
energy in the kicked rotor and of the mean square displacement in quasiperiodic
potentials is generically equal to 2: this means that the motion remains ballistic,
at least in a weak sense, even away from the resonances of the models. Stronger
results are obtained for a class of tight-binding Hamiltonians with an electric
field E(t) = £0 + £1 cos at. For

with an~\n\ v ( v > 3 / 2 ) we show that the mean square displacement satisfies
^ < w , , N 2 l / , y ^Cet2 / ( v + 2 ) - e for suitable choices of to, E0, and £,. We relate this
behavior to the spectral properties of the Floquet operator of the problem.



Section 2 two simple abstract results stating roughly that "close to
resonance" the spectrum of the Hamiltonian or the Floquet operator is
continuous and that the motion has the same asymptotic characteristics as
"in resonance," at least in some weak sense. In Section 3, we first apply
these results to the kicked rotor. We give a simplified proof of the Casati-
Guarneri result stating that generically the spectrum of the Floquet
operator of the kicked rotor is continuous. We show in addition that the
mean growth exponent of the time-averaged kinetic energy, defined below,
generically equals 2 (Theorem 3.1). This can be paraphrased (somewhat
exaggeratedly) by saying that the time-averaged kinetic energy generically
behaves ballistically in the kicked rotor. We then show how to prove
similar results for quasi-periodic Schrodinger operators. In Section 4, we
study in detail the asymptotic behaviour of the kicked linear rotor. We
exhibit various phenomena relating the asymptotic behaviour of the time-
averaged kinetic energy and the nature of the spectrum of the Floquet
operator, strenghtening known results. In Section 5 we then show how
these results apply to the problem of the motion of a charged particle in a
one-band tight-binding model subjected to a time-dependent electric field
(Theorem 5.1). We now first describe our results and the motivations in
some more detail.

Consider a periodically driven classical or quantal Hamiltonian system
with Hamiltonian
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In classical mechanics the evolution of the system is determined by the
Floquet transformation P v, obtained by integrating the Hamiltonian equa-
tions of motion over one period T. It is a canonical transformation of
phase space M. Similarly, in quantum mechanics, integration of the
Schrodinger equation over one period T yields the Floquet operator Uv,
which is a unitary operator on the Hilbert space of states JC. Typically, the
unperturbed classical Hamiltonian is chosen to be completely integrable
with its motion restricted to invariant tori, so that in particular all its
trajectories are bounded. The corresponding quantum Hamiltonian is
assumed to have pure point spectrum so that the same is true for
U0 = exp — (i/h) TH0. What happens when V is turned on?

A natural first question to ask is whether the unperturbed energy H0,
which is a constant of the motion when V=0, remains bounded when
K^0. More precisely, the question in classical mechanics is whether



where 3(H0) denotes the domain of H0, assumed stable under UV.
Without giving a precise definition, let us say the system is dynamically
stable in this case, and dynamically unstable otherwise.

In quantum mechanics one can ask a different, but related stability
question [Be, Ho]: Is the spectrum of the Floquet operator UV still pure
point? We will say the system is spectrally stable if this is the case. It is a
well known consequence of the RAGE theorem [CFKS] that dynamical
stability implies spectral stability, the opposite implication not being true
[DJLS].

We will be interested in dynamically unstable systems. Once the
unperturbed energy does not remain bounded under the full, perturbed
evolution, one can ask about its asymptotic behaviour: how do
/H 0 °<£ m (x , p)\ and | < t / , U V H 0 U m y > \ behave as m goes to infinity? One
is in particular interested in finding out whether these quantities can have
algebraic growth and, in the quantum mechanical case, to relate the growth
exponent to the spectral properties of UV.

Before reviewing the known results, let us quickly recall the various
notions of growth exponent one might consider. Let hm be a sequence of
positive numbers. One says the sequence displays algebraic growth with
exponent «.(h) > 0 if there exist constants c and C so that, for all m e N *

where we use the (unusual) convention that inf0 = oo and sup 0 = 0.
One could alternatively decide to take the fluctuations into account, and
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and in quantum mechanics whether

It turns out this notion is too strong to be of use: the quantities of interest
tend to fluctuate greatly as we will show in detail for the kicked linear rotor
in Section 4. To obtain a fluctuation independent quantity, it has been
suggested [G] one should consider a "mean growth exponent" <x 0 (h )
defined as



The problem is to get upper and lower bounds on this quantity. Upper
bounds of the type

were obtained in [N] under the assumption that V(t) is smooth and the
spectrum of H0 satisfies a gap condition at infinity (see also [J]). The
proofs are based on adiabatic techniques that do not allow for non-smooth
time dependence and therefore do not apply to kicked systems. In addition,
they do not provide lower bounds. One might hope to obtain lower bounds
from an abstract approach initiated in [G] and perfected in [C, L, BCM].
Writing

for the spectral decomposition of UV, the main result of this theory
(Theorem 6.1 in [L], Theorem 3 in [BCM]) states the following. If the
spectral measure d<\ / / , ET^) = dUj.^(K) has Hausdorff dimension B for some
0<B^1 then there exists for all £>0 a constant Ce, so that, for all

Here the constant yH0 depends on the spectral properties of H0 in an
explicit way [G]. The trouble with such lower bounds is that the informa-
tion on the spectral measure is very hard to check: we do not know of
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introduce upper and lower growth exponents in the obvious way [G]:

Note that, even if a + (h) = a._(h), (1.1) does not necessarily hold. On the
other hand,

In addition, if (1.1) holds, a(h) = a.+ (h) = a._(h) = a.0(h).
Let us write

m E N*



any models where this has been done (other than numerically or for the
trivial case where B = 0 or 1). As a result, we are not aware of any models
where lower bounds of the type (1.5) (i.e., for all m) have been proven to
hold for UV with singular spectrum (other than numerically: see [G] for
references). We will give such a model in Sections 4-5.

Actually, the only lower bound we know off is a result of Last ([L],
Theorem 7.2) who shows that in the almost Mathieu equation there exist
Liouville frequencies so that the quantity <wt, X2^,) (with >0 = d0) has an
upper growth exponent a + = 2. We will strengthen this result in the follow-
ing sense. We will show in Sections 3 that, not only in the Almost Mathieu
equation (Theorem 3.2), but more generally in Schrodinger operators with
quasi-periodic potentials as well as in the kicked rotor the relevant dynamical
quantity has generically a mean growth exponent oc0 = 2. The proof turns out
to be very simple and is based on standard Baire theoretical arguments,
sometimes irreverentially referred to as generic nonsense (Section 2). It
seems therefore that the occurence of ballistic peaks close to resonance is a
rather common phenomenon.

The growth exponents a + and oc0 only give lower bounds along a sub-
sequence of times. To display a model in which non-trivial lower bounds at
all times can be obtained, we present in Section 5 a tight-binding
Hamiltonian with electric field E(t) = E0 + E1 coscot and show that, for
suitable choices of to, E1 > E0 and provided the off-diagonal matrix elements
satisfy an ~ \n\ -v (v > 3/2), one has for all l and m

where UT is the Floquet operator of the theory (Theorem 5.1). This result
is obtained by remarking that the model is equivalent to a kicked linear
rotor and upon using results of [DBF]. A detailed analysis of the spectral
properties of UT is also given.

2. TWO GENERIC RESULTS

In many situations of interest either the Hamiltonian H ( w ) or the
Floquet operator £/(w) depend on one or several real variables in such a
way that for a dense set of values of ca a "resonance" occurs. We will give
examples in the next sections. For these values the spectrum is absolutely
continuous and much is then known about the dynamical behaviour of the
system. We show in this section two abstract results permitting to use this
information to draw conclusions on the nature of the spectrum and on the
asymptotic dynamical behaviour of the system for generic values of w, "off
resonance."
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The term generic is used here in the topological sense. It means for w
belonging to a dense Gs set. We recall that a Gs set is a countable inter-
section of open sets and that, on Rn, an intersection of two dense Gs sets
is still a dense Gs set. In addition, dense Gs sets are locally uncountable.
It should nevertheless be stressed that dense G6 sets can very well be of
zero measure; in fact, in many applications where the set can be described
explicitly, this is the case.

Let H be a Hilbert space and A a self-adjoint operator on H with
domain D > ( A ) . Let H(W) be a family of self-adjoint operators on f with
common domain 2: we will assume throughout it is continuous in the
strong resolvent sense. We will write U,(w) = exp — i tH(w) for the corre-
sponding unitary one-parameter group, which is then strongly continuous,
uniformly in t on compacta [RSI].

Proposition 2.1. Let C = {w \ a p p ( H ( w ) ) = 0}. Then C is a Gs

set. In particular, if % is dense, it is a dense Gs.
In the following, we suppose

Remark. (i) Proposition 2.1 is Theorem 1.1 in [Si]. We have
preferred to give an independent proof based on the use of the Wiener
theorem, since the same type of argument serves to show Proposi-
tions 2.2-2.4. (ii) As in [Si], Rn can be replaced by a complete metric
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where H0 is self-adjoint with domain D and the Vw form a strongly con-
tinuous family of bounded self-adjoint operators.

Proposition 2.2. Suppose 3 > ( A ) n D is dense and

(ii) VcoElR", [//(co), A] is relatively H0 bounded and the map
we Rn -> [H(w) , A](H0 + / ) - 1 e f ( 3 ^ ) is strongly continuous.

Suppose in addition that for some j/e3>(A)n@ there exists a B 0 >0
so that for all o in a dense subset B of Rn.

Then for all co in a dense Gs set Sw one has:



space, (iii) The time-average appearing in (2.2) and (2.3) can be omitted for
the abstract argument, but often appears in applications.

Proof of Proposition 2.1. Let i/>;, ieN be an orthonormal basis
of 3?. Consider for each ieN, Te [ 1, oo[ the continuous functions

This proves the proposition. |

Proof of Proposition 2.2. We first show that the maps

are continuous for all \l/e@(A). For that purpose, compute for
ilie3>(A}<^2:

Define ^ = (],,sN. ^J/". Then (2.6) implies that for all coetf, (2.3)
holds. |

and

Continuity of (2.4) now follows easily. For all e > 0 and for all 01 e ^, (2.2)
implies

It is a standard corollary of the Baire cathegory theorem ([S], Corol-
laire 4, p. 325) that (2.5) continues to hold for all to in a dense G6 set y^,
containing ^, and hence

Then Wiener's theorem immediately implies that
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Analogous results hold when dealing with iterates of a unitary
operator U(co). We state the results without proofs, which are completely
analogous.

Proposition 2.3. Let weU"-* U(a) be a strongly continuous
map. If the pure point spectrum of U ( w ) is empty on a dense set of w, then
this remains true on a dense G$ set.

Proposition 2.4. Suppose

(i) w e Rn -> U(w) e U ( 3 f ) is strongly continuous;

(ii) VcoeR, U(co) ®(A)<= D ( A ) ;

(iii) VcoeR", [t/(co), /4] is bounded and the map oeR"-»
[U(o), A] e £ ( f ) i s strongly continuous.

Suppose in addition that for some /e<2>(A) there exists a /?0>0 so
that

for all co in a dense subset R^ of Rn. Then for all o in a dense Gf set ^

3. APPLICATIONS

3.1. The Kicked Rotor

It is hard to get rigorous results on the dynamics or on the dynamical
or spectral stability for the kicked rotor [IS]. For the quantum model,
with Floquet operator
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acting on L2(S1) the only rigorous result we know of is due to Casati-
Guarneri [CG]. In the following theorem we give both an improvement on
this result and a simplified proof of it.

Theorem 3.1. Suppose VeL2(S1), V'eL^S') and that V T T C O ,
the spectrum of U V ( a > ) is purely absolutely continuous. Then there exists
a dense Gs subset y of R so that



(i) Ve e S, app( U V ( a > ) ) = 0;
(ii) Vco e y, for all momentum eigenstates l , ( x ) = exp ilnfx, t & Z,

i.e., the mean growth exponent of the time-averaged kinetic energy is 2.

The proof of this result is given below. Let us first point out that the
hypothesis on a ( U v ( > ) ) for coeQ is proven to hold for a generic set of
V in [CG]. Note that part (i) of Theorem 3.1 is Theorem 2 of [CG].
Actually, the statement of Theorem 2 in [CG] is weaker than the one
given here, but Theorem 3.1(i) immediately follows from their proof. Part
(ii) shows that for (a belonging to £, the time-averaged kinetic energy dis-
plays "almost ballistic peaks" at sufficiently many time scales to force the
mean growth exponent x0 to equal 2. We have no precise information on
how frequent these time scales are, but expect them to be extremely rare,
and hence difficult to detect numerically. Since the proof of Theorem 3.1 is
based on the abstract nonsense of the previous section, we have no handle
on the set y either. It should nevertheless be thought of as a set of
Liouville numbers. The main open problem in the kicked rotor is to show
that for u a quadratic irrational and for sufficiently high coupling constant
dynamical localization occurs: we unfortunately have nothing to say on
that.

Proof of Theorem 3.1. It will be sufficient to check

For all n(o e Q, the mean growth exponent is therefore equal to 2. The
result then follows from Proposition 2.4, provided we show that, for all co,
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satisfies the conditions of Propositions 2.3 and 2.4 with A = P. That
y-> U V ( o ) is strongly continuous is immediate and since

hypotheses (ii)-(iii) of Proposition 2.4 follow as well. Hence part (i) of
Theorem 3.1 follows from Proposition 2.3. As for part (ii), since for all
ncoe®, a s ( U V ( w ) = 0, the results of Last and Guarneri [G, L] show
that VTTCO e Q and Vi/^ 3CXw) so that



the mean growth exponent is smaller or equal than two. This is obvious
upon remarking that

on @(Ha) = @(—A) has purely absolutely continuous spectrum. For
w e D ( X ] one then has that <wt, X2w t,>

2~t2 (see [AK] for a detailed
proof of this folk theorem). Identifying Q with an element of Rn(n +1), it is
easy to see that the hypotheses of Proposition 2.1 and Proposition 2.2 are
satisfied by Ha, taking A = X and w e @ ( X ) . As a result, there is a G&

dense set of w so that the mean growth exponent of <w,, X2^,> is 2 and,
in particular, for all strictly monotonic functions F(T), F(T)-> oo, 3C>0,
Tk -> o, so that
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Note that there are other models, such as the kicked Harper model,
where resonances occur, and the results can be adapted to such cases as
well.

3.2. Quasiperiodic Potentials

Let Q be an n + 1 by n matrix and W a continuous Zn+1-periodic real-
valued function on Rn+1. Define, for xeR n ,

Note that, if Q has only rational entries, there is a sublattice of Zn over
which Vn is periodic. As a result, the Schrodinger operator

This is of course easily adapted to discrete Schrodinger operators and
holds for the time-averaged quantities as well. In fact, combining the above
with Theorem 7.1 in [L], one gets the following result on the almost
Mathieu equation.

Theorem 3.2. Let H T e ( w ) = -A + T cos 2n(con + 0) on /2(Z),
with | A | > 2 and 0eR. Then there exists a dense G# set of to so that

(i) All spectral measures of HT, 0 ( w ) are zero Hausdorff dimensional;



(ii) For all w in a dense subset of /2(Z) contained in D ( X ) , (3.3)
holds and the mean growth exponent of <w,, X 2 w , > equals 2.

Here (i) is exactly Theorem 7.1 of [L], while (i i) improves
Theorem 7.2 of [L]. It follows immediately upon taking intersections of
dense Gs sets.

Then Q 1 ( x ) = 1 — x, 0 < x< 1, and for all k> 1, Qk. is the unique kth order
polynomial satisfying Q'k = Q k _ 1 , \ 0 Q k ( x ) d x = 0. Note that Qk(0) =
Qk(1) for all 0< i<k-2 . Hence Qk e C(k-2)(S1). For example, Q2(x) =
-1x2 + 1x-1 and Q3(x) = 1 x ( x - 1 ) ( - 2 x + l ) .

In order to study the asymptotic behaviour of the momentum variable
in the kicked linear rotor, first note that iterating (4.2) yields
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To have some explicit examples in mind, we define, for ke N\{0},

where / = — V1. Standard canonical quantization of the Hamiltonian in
(4.1) leads to the following Floquet operator on L2(S', dx):

where w e R is a fixed rotation number. The corresponding Floquet map is

4. THE KICKED LINEAR ROTOR

4.1. The Model

Consider a particle moving on a circle S1, having therefore the cylinder
M = T * S 1 = S 1 x R a s phase space. The Hamiltonian of the kicked linear
rotor [G, Be, B, Ho, O] is
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where

Let us point out some immediate and simple features of this model.
First, if w e Q, then typically pm ~ m as is easily seen from (4.4)-(4.5)

and the observation that the motion is then periodic in the x-variable.
Indeed, if w = r/s, with r, s relatively prime integers, then, for all L £ N

So p f l ~ t i f f S ( s , ( r / s ) ) f ( x 0 ) = 0 .
On the other hand, if w e R\Q, then the motion is ergodic in the x-vari-

able and hence one immediately obtains that l im m _ 0 ( l /m) S ( m , ( w ) f ( x 0 )
= 0 so that

In short, when w is rational, the motion is ballistic on the cylinder, whereas
it is subballistic if w is irrational.

Note however that, even though pm = o(m) it is still conceivable that
supm \pm\ = o. Moreover it is well known from the Denjoy-Koksma
inequality that lim infm \pm\ < C< o if f = — V e C(S1). Hence the clas-
sical dynamics would in such a case correspond to the point (xm, pm)
wandering all over the cylinder, up and down the p axis, leaving every
bounded set at some times and returning close to the origin at some other
times. This behaviour is thought of as unusual since it can not occur in
systems with time-independent Hamiltonians [RS III]; one expects it to be
reflected in the quantum model through the presence of singular con-
tinuous spectrum, a fact we shall prove below.

The asymptotics for the classical dynamics of the kicked linear rotor
was studied in detail in [DBF]. We shall show here that the analysis
carries over to the quantum model and study the spectral and dynamical
(in)stability of the model.

Before turning to this task, we show the quantum equivalent of (4.6).
We need a preliminary technical lemma. Let d(P) denote the domain of P,
i.e.,



Lemma 4.1. If weS(P) and if V, V 'eL2(S1), then U m / e @ ( P )
Vw 6 N. Moreover,
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Proof. Since $ s , f ( x ) d x = 0 and /eL2(S1, dx) it follows from the
Von Neumann mean ergodic theorem that m-2 \ \ S (m ,w) f \ \ 2 m l ~ o

) 0.
Hence, using (4.8), one has (4.11) since i e L ° ( S 1 ) . The proof of the first
statement is similar. |

and

and

where || • || denotes the L2-norm.

Proof. First we compute

Now, if w e @ ( P ) , then weL°(S1), so f ( x - k w ) ^ ( x - m w ) e L 2 ( S 1 , dx)
since fe L2(S', dx). In conclusion

belongs to L2(Sl,dx); (4.7) follows immediately from this. Using the first
relation in (4.9), (4.8) follows as well. |

Proposition 4.2. If we®(P), if V,V'eL2(S'), and if w is irra-
tional one has, as m -> o,



from which the conclusion follows.

4.2. Spectral (In)Stability

We are now ready to settle the spectral stability question for the
kicked linear rotor. The result is summarized in the following theorem.

Theorem 4.3. Let U V ( w ) = e x p - i w P e x p - i V ( X ) with V, V'e
L2(S1), i.e., VeHl(Sl). Then

(i) For typical V and for all w e Q, app( U V ( w ) ) = 0 = asc( U V ( w ) ) ;
i.e., L2(S') = Hac,(UV(w));

(ii) If weR\Q, then a a c ( U V ( w ) ) = 0 and in addition either
L2(S') = J ^ ( U V ( w ) ) or L2(S') = #„(Uv(w));

(iii) For typical V, there exists a dense Gs set of w so that
L2(S1) = >K s (U v (w)) (i.e., eaf(UV(w)) = 0 = fwp(UV(w));

(iv) If V e H s ( S 1 ) , s > 1, then L2(S') = H ( U V ( w ) ) (i.e., e a c ( U V ( w ) )
= 0 = a s c ( U V ( w ) ) for Lebesgue almost all w.

Proof. Part (i) is the spectral pendant of the observation made above
that for rational w3, and for typical V, the motion is ballistic: pm~m. If
w = r/s with r and s relatively prime integers, then it is easy to see that the
spectrum of U V ( w ) is organized in bands, and has no singular continuous
part [IS, Be]. To see that, for typical V, it has no eigenvalues either, we
proceed as follows. First, (4.9) implies
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Clearly (4.10)-(4.11) are the quantum analogs of (4.6). For rational w,
one sees from (4.7) that, as in the classical case, <w, U V

m P U m w > ~m for
typical potentials V; we shall say that a potential V is a typical potential
provided the function S(s, (r/s)) V is not constant on a set of positive
measure for any r, s as above. Note that it follows from our discussion
above that this is equivalent to requiring that pm ~ m for all rational co and
for almost all initial values x0. Putting an appropriate topology on the set
of all potentials one can show that the typical potentials form a dense Gd

set, but we shall not be interested in that any further. It is perhaps more
interesting to remark that the potentials Qk introduced above are typical.
Indeed, it is easy to compute



Consequently, it is clear that, provided the function S(s, (r/s)) V is not
constant on a set of positive measure, the spectrum of U V ( a > ) s is purely
absolutely continuous. In that case, the same holds for the spectrum of
UV(w) itself.

More interesting is the case where wR\Q. To prove (ii), recall that
the aforementioned result of Guarneri and Last, and more precisely
Theorem 6.1 in [L] implies that, if the spectral measure of w contains an
absolutely continuous component, then necessarily

So U V ( w ) is unitarily equivalent to Aexp — iaP, which of course has
pure point spectrum. In conclusion, if w e R\Q>, we know that either
a c ( U V ( w ) ) = 0, or a p p ( U V ( w ) ) = 0; the spectrum is therefore either
purely singular continuous or exclusively pure point. We have already
shown that the first case occurs on a dense G^ set. We now show the
second case occurs as well.

One expects the spectrum to be pure point for w poorly approximated
by the rationals. To prove this, first remark that it follows from (4.13) that
it suffices to solve
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for some C>0. This being incompatible with (4.11), we conclude that
a a c (U V (W)) is empty, proving the first statement in (ii); (iii) now follows
immediately from this, Proposition 2.3, and (i).

The second part of (ii) is easily proven as follows. Suppose Ae
a P P ( U V ( w ) ) and let w be the corresponding eigenfunction, then

Taking absolute values on both sides yields

Since w is irrational, this implies |w| (x) = cst, so that w ( x ) = exp- iW(x)
for some W. Reinserting this into (4.12), one has

and hence



a fact we will prove more directly below. Part (ii) is an improvement over
[Be], where the result is proven on the one hand for all irrational w under
the hypothesis that Ve C1 |s1, | V'\ (x) dx < 2n and on the other hand, for
almost all weR\Q, provided VEC2(S'). Our result here shows that
V'EL2(S') suffices and that the condition on the total variation of Vcan
be removed. Note that some smoothness of V is at any rate needed: it is
mentioned in [Be] and easily confirmed that for V(x) = 2nx, xe ]0, 1[, the
spectrum of U v is a.c. even for irrational w. Note however that, viewed
as a function on S1, this potential does not have an L2 derivative because
of the jump discontinuity. For typical VeC2(S'), \\V'\dx<2n, (iii) is
proven in [O] using the results of [CG] and [Be].

4.3. Dynamical (In)Stability

We are interested in the behaviour of < U m / , P 2 U m w . First remark
that the results of Section 2 immediately imply that, generically in w, the
mean growth exponent of this quantity equals 2. To get sharper estimates,
we now use the results of [DBF]. If the Fourier coefficients vn of V satisfy
v n ~\n \~ ( v + 1 ) for some v>l /2 , it is an immediate consequence of
Theorem l.l(i) of [DBF] that for a class Rq of explicitly described
Liouville w and for all e > 0, there exists a constant Ce so that

where w f ( x ) = exp i2n/x. Here weRq if and only if the denominators qk

of its continued fraction expansion satisfy
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for WeL2(Sl). Assuming V e H s ( S 1 ) , s>\ and that qk +1 = 0(ql
k
 + y) with

1 + y < s such a solution exists as is easily seen upon Fourier transforming
the equation and solving for the Fourier coefficients of W. It is then easy
to see that U v ( w ) is of the form (4.13) with A = 1. Here the qk are the
denominators of the continuous fraction approximants of w. Since the
condition qk+1 = O(ql+') holds Lebesgue a.e. (Theorem 32 in [K]), (iv)
follows. |

Remark. A version of part (i) of this result is proven in [Ho, Be].
Absolute continuity of the spectrum implies [G, L] that Vi/< D ( P ) ,



Moreover, Theorem 1.2(ii) in [DBF] implies that, for the same w,

Using (1.5) this implies that d i m H / w , ^ ( l / ( l / 2 ) + v). At the same time,
and still for the same w, Theorem 1.1 in [DBF] yields

Summarizing the result loosely, we see that <i/^, Uy(co) "' P 2 U V (W) m wt>
oscillates quite a bit, between m2 and m(2/(v+ 1/2)), staying always at least as
high as m2 / ( v + 1 ) .

Note again that the upper bound on the Hausdorff dimension of the
spectral measure /^ does not exclude the existence of almost ballistic
peaks, a phenomenon already observed in [L] and in Theorem 3.2 above.

If VEC00, then Theorem 1.2 (ii) of [DBF] shows that, for all
weR\Q, x_ =0, implying, via (1.5), that the Hausdorff dimension of /^
vanishes. So in this case, the Hausdorff dimension takes on only two
values: it is equal to 1 if w is rational and equal to 0 otherwise. At the same
time, the results of Section 2 tell us that for generic values of w,
x0 = 2 = a +. This shows in an even stronger way than the example of
Section 3.2 that no upper bounds on <w, U V ( w ) ~ m P2UV/(w)m w> can be
expected in terms of information on the fractal dimension of the spectral
measures.

These results show that <w, U V ( a > ) ~ m P 2 U v (w) m w>i tends to fluc-
tuate enormously. It is legitimate to speculate that this is a feature common
to the solution of Schrodinger equations with propagators having
"unusual" spectrum. Note however that detecting such fluctuations numeri-
cally might be an impossible task: the times at which they are proven to
occur (see [DBF]) behave like qk, where the qk are the denominators of
the convergents of the continued fraction expansion of w>, which grow
extremely fast for the w considered.

To end this section, we should point out that the results in [DBF]
actually concern the asymptotic behaviour of <pm> 2 , where

This is clearly determined by the asymptotic behaviour of the L2-norm of
the time-average of S(m, w) f. It turns out that this quantity has the same
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asymptotic behaviour as <wl, U V ( w ) -m P 2 U v (w) m w^>, as we now briefly
show. First compute, using (4.8)

Averaging over m and a short computation then yield

from which it is clear that the asymptotic behaviour of < Um w, P2 Um \jj >
is determined by the one of \\S(m, at) f ( X ) w\\2. Assuming that \w\ (x) = 1,
Vx, which is in particular true when w is a momentum eigenstate w e ( x ) ,
one simply has \\S(m, w) f(X) w f \ \ = \\S(m, w) f(X)\\ so that the averaged
kinetic energy is then determined by the time-averaged L2-norm of
S(m, w) f ( X ) . It turns out that this has the same asymptotic behaviour
as the L2-norm of the time-average of S(m, w) f. To see this, note that a
simple computation shows that

whereas

with

with



5. A ONE-BAND TIGHT BINDING MODEL IN A
TIME-DEPENDENT ELECTRIC FIELD

In this section we turn our attention to the one-dimensional tight-
binding model with time-dependent electric field E(t) given by

where, for xe[0, 1[=S',
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It then suffices to notice that the proofs of [DBF] are entirely based on the
following estimates for GM(x) (Lemma 2.1 in [DBF])

and

with the upper bound holding for all x e R. The same inequalities hold for
HM(x) as well, as is easily checked. It follows that the quantum and classical
dynamics in this model are essentially the same. This is not too surprising
if one compares pm = p0 + S(m, w) f ( x 0 ) to (4.7), which can be rewritten
suggestively as (see also [O])

Here the off-diagonal matrix elements an of the Hamiltonian are assumed
to belong to l2(Z) and an = a_n. The corresponding time-dependent
Schrodinger equation

can be solved explicitly in several ways [DK]. We proceed as follows.
Fourier transforming of (5.2) yields



for w 0 e @ ( N ) . For this expression to make sense, we need that w t e @ ( N ) .
A sufficient condition to ensure that d ( N ) is invariant under U, is given by
Lemma 4.1: n a n e e l 2 ( Z ) .

Note first that, if E0 = 0, it is well known that <wt, N2wt ~t2, except
if e(t) = Ei cos(2n/T) t, an = s1,n + d-1,n and with very special choices of
T and E1 [DK]. If, on the other hand, e(t) = 0, one readily sees that
sup, <w,, N2\jj,y < C. We will consider the intermediate situation where
E(t) = E0 + E\ cos(2n/T) t and £, > E0 > 0, to obtain the following result.

Theorem 5.1. Suppose an^c\n\~v for some c>0 and v>3/2.
Then there exists a set of Liouville w so that the following holds. Given w
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We chose to use the unusual notation "x" for the quasi-momentum in
order to bring the analogy with the previous section out more clearly, as
follows. Solving the Schrodinger equation yields

where

and

We now concentrate on smooth periodic field amplitudes E(t) of period T
for which we write

The Floquet operator UT is then given by

The analogy with the previous section, and in particular with (4.3) is now
completely clear. We shall be interested in the asymptotic behaviour of



in this set and given E0, there exists a countable and dense set of values of
E1 in ]E0, o[ so that for all e>0 and WeZ, there exists C>0 so that,

Since G"(t + )= -G"(t_) >0 one finds
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Here C depends on s, l, E0,w and E1.
Note that, as v -> 3/2, the exponent approaches 1 from below, so that

under our hypotheses the motion is always subdiffusive. The lower bound
on v ensures that the evolution leaves the domain of N invariant.

Proof. Comparing (5.4) to (4.3), it is clear that, in order to apply the
results of Section 4.3, we need to get a lower bound on the Fourier coef-
ficients wn = w_n of WT(x):

To control the integral, we use a stationary phase argument. Since we
assume E1> E0, the phase has two stationary points 0 < t_ < t+ < T:

Taking small open intervals A ± < ]0, T[ around t ± so that A + n A _ = 0,
one can construct a smooth partition of unity on R / T Z so that

where supp^ ± c cz/  ±,0^q>1e C°° and where q±(t) = \ on a small
subinterval of A ± containing t ±. Then

with obvious notations. Since we know that, on the support of p0, \G'(t)\
is bounded away from 0, an integration by parts shows that |I/ =
O( n |~ ' ) . For In±, a stationary phase argument shows that



Since P is a monotonically increasing continuous function of E1, mapping
]E0, o[ onto ]0, o[, one can choose E\ so that P(El) = 2n(p/q), with
p, q e N and q different from 0 modulo 4, which guarantees that

This implies wn^ \n\ -(v + 1/2>, so that (5.8) and (4.14) yield the result of the
theorem. |
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